Neutrino Operations

Sam Zeller Fermilab Institutional Review June 6-9, 2011

with help from:

A. Blake, D. Harris, J. Hylen,

A. Kreymer, L. Lueking, M. Marshak,

K. McFarland, R. Plunkett, C. Polly,

R. VandeWater, and J. Walding

Outline

- introduction to current neutrino program
 - MiniBooNE
 - MINOS
 - MINERVA
- brief overview of detectors and beams associated with these three operating neutrino experiments
- review the performance and operation of these detectors and beams over the past year
- projections for data collection up until the 2012 shutdown

Current Neutrino Program

- FNAL has a very active
 v program with 3 running
 experiments operating 4
 detectors in 2 beamlines
 and at 2 sites
- Booster (8 GeV protons)
 - MiniBooNE

- NuMI (120 GeV protons)
 - MINOS
 - MINERVA

Current Neutrino Program

- FNAL has a very active
 v program with 3 running
 experiments operating 4
 detectors in 2 beamlines
 and at 2 sites
- Booster (8 GeV protons)
 - MiniBooNE
 - SciBooNE
- NuMI (120 GeV protons)
 - MINOS
 - MINERVA
 - ArgoNeuT

Current Neutrino Program

- FNAL has a very active
 v program with 3 running
 experiments operating 4
 detectors in 2 beamlines
 and at 2 sites
- Booster (8 GeV protons)
 - MiniBooNE
 - SciBooNE
 - MicroBooNE
- NuMI (120 GeV protons)
 - MINOS
 - MINERVA
 - ArgoNeuT
 - NOvA

MiniBooNE

operating since Aug 2002

- single detector, short baseline v experiment
- studies both v oscillations and v interactions

MiniBooNE Setup

- 8 GeV protons, air-cooled Be target, single magnetic focusing horn, v and anti-v
- Cerenkov detector filled with 800 tons CH₂, 1200+ PMTs

MiniBooNE Detector

MB detector has been operating for almost 9 years now

detector has been stable throughout run (stable to ~1%)
 and very reliable (>99% detector uptime)

Proton Delivery to MiniBooNE

- total anti-v data collected = 8.65x10²⁰ POT
 - 5.66x10²⁰ POT analyzed and published, plan to go public this summer with anti-v data collected up to May 23, 2011

record week! 0.13x10²⁰ POT 97% beam uptime

 MiniBooNE has benefitted from NuMI downtime and from Booster improvements ...

MiniBooNE Outlook

plan is to continue running anti-v's until the 2012 shutdown

• current projection: MB on the path to collect >1x10²¹ POT by March 2012

MiniBooNE Horn Recovery

- 1st horn died after 95M pulses (July 2004)
- problems with 2nd horn in Sept 2010 (water leak, ground short)
 - 2 problems unsure how related looked alot like 1st horn failure
 - installed de-humidifier after 1st horn failure bought time to diagnose, keep running
 - closed 2 of 6 water lines to stop leak
 - investigation by FNAL/LANL team:

 determined that ground shorts related to

 water accumulating in drain pan shorting horn return line
 - with water leak stopped, short completely cleared up ... horn recovered!
- 2nd (current) horn and target have since run successfully; overall have accumulated >320M pulses (world record!)

MiniBooNE Horn and Target Spares

- complete 3rd horn and target ready for installation
- also have a 4th target and some horn parts
 - could build a 4th horn, but would require \$ investment

MiniBooNE Remote Shifts

- remote shifts have been part of the key to continued running
- maintain beam and detector monitoring from remote control rooms at 9 different institutions

- in past year, ~40% of MB shifts were remote
 - significantly reduced travel costs and time
 - continues to go well
- MINERvA now also set-up for remote shifts (MINOS currently seeking approval)

MINOS

operating since Mar 2005

- two detector, long-baseline
 v oscillation experiment
- also broad range of physics analyses beyond oscillations

MINOS Setup

 120 GeV protons, movable graphite target, two horn focusing system, v and anti-v

- two detectors to mitigate systematics
- magnetized steel/scintillator tracking calorimeters

MINOS Detector Performance

both near and far detectors operate with minimal downtime

- ND uptime: 93%

(beam-weighted, past year; was 92% for past 3 years)

FD uptime: 85% -

(beam-weighted, past year; was 94% for past 3 years)

 recent downtime due to incident in Soudan mine

Incident in Soudan Mine

- fire started in Soudan mine shaft at 9pm March 17th, 2011
 - caused by regular maintenance performed by DNR state park staff (owns Soudan mine)
- DNR & lab staff reacted quickly

Duluth News Tribune

- Minnesota Interagency Fire Center (MIFC) installed an emergency response team which worked to extinguish the fire
- extraordinary team effort
- FNAL fire dept sent equipment, provided advice in dealing with fire
- everyone working together has restored ability for special staff to enter mine
- no one was in mine at the time; no injuries or detector damage

Clean-Up

- large amount of foam was pumped in from the top of mine
 - foam pushed open fire doors, swept in debris
 - also, lowest part of magnet coil partially immersed in water

lab occupancy has been re-established
 ES&H participated in inspection of lab

- clean-up of laboratory is complete
- electronics powered-up normally
- magnet coil slowly ramped up to dry it out (FNAL provided advice)
- shaft repairs are underway

May 19: MINOS FD fully operational and running at full field, ready for beam

MINOS Proton Delivery

• total anti-v data: 3.2x10²⁰ POT (out of 4.2x10²⁰ POT request)

shutdown

downtime due to target problems

plan to release this summer (~x2 more data)

Recent NuMI Target History

• after 6 years of good performance with NuMI LE targets, the last ½ year has been a challenge; decent longevity with 3 targets, then 3 quick failures

target design	maximum beam power	integrated POT	lifetime (design=12months)	target failure mode
NT01	270 kW	1.6x10 ²⁰ POT	16 months	frozen drive shaft
NT02	340 kW	6.1x10 ²⁰ POT	33 months	graphite core deteriorated
NT03	375 kW	3.1x10 ²⁰ POT	10 months	water leak
NT04	375 kW	0.2x10 ²⁰ POT	<1 month	water leak
NT05	337 kW	1.3x10 ²⁰ POT	4 months	water leak, weak laser weld
NT06	305 kW	0.2x10 ²⁰ POT	6 weeks	water leak

 downstream water turn-around modified for NT06 after NT05 autopsy

Investigations

• series of tests conducted on both horn & targets (radioactive environment, so diagnostics are challenging)

horn
- scan of relative horn/target position ok
- in-situ magnetic field test & field modeling
- horn on/off running ok
- boroscope

target - visual autopsy of NT06 - autopsy of NT04

*NT06 autopsy revealed water leak in upstream end of target; no problem with downstream turn-around

NuMI Plans & Spares

- currently, no new targets
 - 2 new targets in construction (NT07,08 from IHEP)
- collaborating with RAL on target failure analysis and potential add'l resources

- this week: plan is to resume operations with refurbished NT01
 - NT01 ready to install, will likely run at low intensity
- NT07 should be done early/mid August (IHEP)
 - 2 week shutdown to install
 - nominally 1 year of operation with this style target

MINERVA

operating since Mar 2010

- is a relative newcomer
- precision v cross section measurements on a variety of nuclear targets over a broad energy range

MINER_vA Setup

- NuMI beam (same as MINOS)
- shares NuMI near detector hall, L=1 km

 fully active, finely segmented scintillator tracker surrounded by calorimeters + additional targets upstream of active region

MINERvA Highlights Over Past Year

- tremendous progress over past year completed full detector installation (March 2010) and is successfully taking data
- 03/11: MINERvA project received 2011
 DOE Secretary's Award of Achievement
- 03/11: 1st preliminary physics results presented at NuInt11 (J. Raaf's talk)
- 04/11: cryogenic target installed to run with He in LE beam (currently undergoing safety review, estimate 1st data with filled target in July)

MINER_vA Proton Delivery

- quickly rose
 to high detector
 live-time after a
 few weeks of
 running with
 full detector
- running >97%
 since May 2010
 (96% live since start)

- collected total of:
 - $1.53x10^{20} POT v$ (out of 4+0.9x10²⁰ request)
 - 1.30x10²⁰ POT anti-v

Special Target Runs

 one of key features of the beamline is ability to change target position and horn current

 with suitable choice, can vary in fine detail the T and L momentum of particles emanating from the target

- allows you to map out the kinematic dist of parent particles
- important for understanding the incoming v flux & reducing flux uncertainties

Status of MINERvA Special Target Runs

 MINERvA plans a series of six LE v mode special runs:

Target Position	Horn Current	POT Requested	POT on Tape
LE10cm	150kA	0.15e20	-
LE10cm	200kA	0.15e20	-
LE10cm	0kA	0.15e20	0.07
LE100cm	200kA	0.15e20	-
LE150cm (ME)	200kA	0.15e20	0.07
LE250cm(HE)	200kA	0.15e20	0.07

0.2x10²⁰ POT (out of 0.9x10²⁰ initial request)

also data in one anti-v special run:

Target Position	Horn Current	POT Requested	POT on Tape
LE150cm(ME)	-200kA	0.15	0.07

- started in August 2010
- unable to complete due to NuMI target failures
- plan is to come back to these (cannot do in NOvA-era)

MINER_vA Testbeam Activities

 June-July 2010, exposed a replica of MINERvA detector to a dedicated, LE tertiary pion beam at FTBF

- 400-1200 MeV π 's

(beamline is now a permanent part of FTBF!)

 important to calibrate the absolute energy response of MINERvA detector

(measure E scale to ~2%)

analysis is going well

Reconstruction Status

important steps on the path to physics!

Making Plans for the Future

- MINERvA depends on MINOS ND for μ reconstruction
- after March 2012 shutdown, MINERvA personnel will be needed to operate MINOS ND; already getting a head start!
- Oct 2010: a task force was appointed to plan for this transition
- MINERvA collaborators now full partners in monitoring MINOS ND and replacing electronics
 - FNAL has provided a new person to support this transition (½ FTE)

MINFR_VA

 MINERvA has also provided new collaborators to work on this (post-docs/scientists from Rochester, W&M)

MINOS

NuMI Outlook

- as of today:
 - MINOS has collected 3.2x10²⁰ POT anti-v
 - MINERvA has collected 1.5x10²⁰ POT v
- run times requested in LE mode:
 - MINOS: $4.2x10^{20}$ POT anti- $v = (1.7 + additional 2.5)x10^{20}$
 - MINERvA: 4.9x10²⁰ POT v = (4.0 LE + 0.9 special runs)x10²⁰

NuMI Outlook

- as of today:
 - MINOS has collected 3.2x10²⁰ POT anti-v
 - MINERvA has collected 1.5x10²⁰ POT v
- run times requested in LE mode:
 - MINOS: $4.2x10^{20}$ POT anti- $v = (1.7 + additional 2.5)x10^{20}$
 - MINERvA: 4.9x10²⁰ POT v = (4.0 LE + 0.9 special runs)x10²⁰

The Committee recommends sharing the short-fall of POT such that MINOS receives ~90% of the total requested POT for antineutrino running and MINERMA receives ~90% of the total requested POT for neutrino running - assuming the current operation capabilities of the NuMI beamline.

(PAC, June 2010)

- MINOS has 76% of full request
- MINERvA has 31% of full request

NuMI Outlook

- as of today:
 - MINOS has collected 3.2x10²⁰ POT anti-v
 - MINERvA has collected 1.5x10²⁰ POT v
- run times requested in LE mode:
 - MINOS: $4.2x10^{20}$ POT anti- $v = (1.7 + additional 2.5)x10^{20}$
 - MINERvA: 4.9x10²⁰ POT v = (4.0 LE + 0.9 special runs)x10²⁰

The Committee recommends sharing the short-fall of POT such that MINOS receives ~90% of the total requested POT for antineutrino running and MINERVA receives ~90% of the total requested POT for neutrino running - assuming the current operation capabilities of the NuMI beamline.

(PAC, June 2010)

- MINOS has 76% of full request
- MINERvA has 31% of full request
- current projection for remaining protons for NuMI between now and March 2012 shutdown: 2.2x10²⁰ POT
- in this optimistic model and if remainder of run is v mode, then both experiments would get to ~3/4 of their requests
 - Directorate is considering strategies for extra running

Computing in Past Year

senior

middle-aged

MiniBooNE

young

MINOS

MINER_VA

· data-taking, dataprocessing & storage optimization, maintenance, and operation of existing computing tools

 economical computing solutions to combat aging infrastructure

- in assuring that data-taking and operations continue smoothly, have had to respond to differing needs and computing models
- going forward, FNAL strategy for targeting common solutions for IF experiments (even before they start operations) will be beneficial

- Fermilab hosts a diverse, world-leading program in accelerator-based neutrino physics
- 3 highly successful v experiments operating in 2 beamlines
 - MiniBooNE, MINOS, MINERvA

- Fermilab hosts a diverse, world-leading program in accelerator-based neutrino physics
- 3 highly successful v experiments operating in 2 beamlines
 - MiniBooNE, MINOS, MINERvA
- Booster v beamline has operated extremely well this year
 - MiniBooNE well on the way towards doubling anti-v statistics

- Fermilab hosts a diverse, world-leading program in accelerator-based neutrino physics
- 3 highly successful v experiments operating in 2 beamlines
 - MiniBooNE, MINOS, MINERvA
- Booster v beamline has operated extremely well this year
 - MiniBooNE well on the way towards doubling anti-v statistics
- NuMI has had a few unusual challenges this year; despite this has maintained >85% detector live-times, 67% beam uptime
 - MINOS has world's largest sample of long-baseline anti-v's
 - MINERvA's goal is to collect more LE v data; important to do before NOvA turns on!

- Fermilab hosts a diverse, world-leading program in accelerator-based neutrino physics
- 3 highly successful v experiments operating in 2 beamlines
 - MiniBooNE, MINOS, MINERvA
- Booster v beamline has operated extremely well this year
 - MiniBooNE well on the way towards doubling anti-v statistics
- NuMI has had a few unusual challenges this year; despite this has maintained >85% detector live-times, 67% beam uptime
 - MINOS has world's largest sample of long-baseline anti-v's
 - MINERvA's goal is to collect more LE v data; important to do before NOvA turns on!
- both legs of the FNAL neutrino program preparing new physics results to be released this summer!

